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Abstract 

 

This paper examines the performance of the indirect transformation-based approach for the 

measurement of value at risk (VaR) suggested by Samanta (2008). A technical problem 

usually encountered in practice comes from the departure of the observed return distribution 

from a specific form of distribution, viz., normal distribution. Traditional approaches tackle 

the problem by identifying a suitable non-normal distribution for returns. However, Samanta 

(2008) addressed the issue indirectly by transforming the non-normal return distribution to 

normality. The simulation exercise carried out in this paper shows that the transformation to 

normality provides a sensible alternative to the measurement of VaR. Further, the empirical 

assessment of the accuracy of the VaR estimates with respect to selected exchange rates 

reveals that the transformation-based approach outperforms the method based on the 

normality assumption for return distribution; moreover, the former produces VaR accuracy 

that is usually better than that of a more advanced tail-index-based approach.   
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How Good is the Transformation-Based Approach to Estimate 

Value at Risk? 

Simulation and Empirical Results 
 

1. Introduction 

The concept of value at risk (VaR) gained importance in the banking and finance 

literature over the past two decades. This was originally proposed as a measure of market risk 

exposure, thereby serving as the basis for calculating related risk capital (Basel Committee, 

1996a, 1996b). Over time, VaR has emerged as a unified tool to measure other risk 

categories, such as, credit and operational risks. Further, the domain of application of this 

measure has widened from being the basis for determining the risk capital at banks, to the 

calculation of the margin requirement for traders/investors at stock exchanges, and to the 

design of the so-called „macro markets‟ (Majumder and Majumder, 2002). The concept of 

macro markets involves a new set of markets for non-financial income; it was pioneered by 

Shiller (1993a, 1993b) and Shiller and Wincoop (1999), among others. The concept of VaR 

suffers from a major limitation of not being a coherent risk measure (Artzner, et al., 1999). 

Further, it cannot assess the complete risk profile. For instance, VaR cannot assess the 

magnitude of excess loss. On the other hand, concepts such as excess shortfall (ES) (which is 

helpful in assessing the average magnitude of losses over VaR), loss severity (Jorian, 2001), 

and conditional-VaR (Co-VaR), which is useful in assessing the financial stability of an 

economy (Acharya, et al., 2010; Acharya, et al., 2012; Adrian and Marcus, 2008), all depend 

on VaR. The growing application of VaR for diverse purposes warrants further improvements 

to or simplifications of the task of measuring VaR.  

A particularly well-identified problem in connection with VaR estimation stems from 

the observed deviation of return distribution from normality. The normality assumption 

brings in theoretical convenience because a normal distribution is fully characterised by its 

first two moments, i.e., mean and variance. However, in reality, the observed return 

distributions are usually far from normal. Conventionally, the issue of non-normality is 

addressed by directly fitting suitable non-normal distributions, either parametrically or non-

parametrically. This task faces two challenges. First, one has to identify a suitable form of 

return distribution from the set of all relevant non-normal distributions, such as the t-

distribution, mixture of two or more normal distributions (van den Goorbergh and Vlaar, 

1999), Laplace distribution (Linden, 2001; Puig and Stephens, 2007), hyperbolic distribution 

(Bauer, 2000), and Auto-Regressive Conditional Heteroscedasticity (ARCH) or the 

Generalised-ARCH (GARCH) (Engle, 1982; Bollerslev, 1986; Wong et al., 2003). The 

search domain is very heterogeneous and wide, and one is always exposed to the risk of 

choosing a wrong distribution/model as the best one. Second, each class of 

distributions/models in the search set is unique in its own way, which calls for specific 

conceptual understanding and computational requirements. Eventually, this gives rise to 
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complexity in the task, particularly for practitioners, who are already grappling with several 

business activities.   

The observed non-normality can be sensibly handled indirectly by transforming the 

non-normal returns into normality. In an empirical exercise, Samanta (2008) experimentally 

adopted one such approach and found quite encouraging results. In the present paper, we 

assess the performance of the transformation-based indirect approach on two counts. First, we 

conduct a simulation exercise to examine how accurately the transformation induces 

normality when applied to random observations drawn from potential forms of non-

normality. In this exercise, the Student-t distribution, skewed-Laplace, and ARCH and 

GARCH models are transformed using normality-transformation. Second, we check the 

robustness of Samanta‟s (2008) empirical results by employing real exchange rate data 

covering the period after the recent global financial crisis.  

The rest of the paper is organised as follows. Section 2 presents a broad outline of the 

issues related to VaR estimation through direct distribution fitting approaches and 

summarises the transformation-based indirect approach. The results of the simulation 

exercise for assessing the performance of the normality transformation are presented in 

Section 3. In Section 4, the empirical results are discussed. Section 5 concludes the paper.  

2.  Value-at-Risk: Concept and Estimation Issues 

Let Wt denote the total value of the underlying assets in a portfolio at time t. The 

change in total value from time t to t+k is Wt(k) = (Wt+k - Wt) = (1+r)Wt, where r represents 

the proportional change from time t to time (t+k). An individual with a long financial position 

on the asset portfolio will incur a loss if r < 0, but a short position will see a loss when r > 0. 

Thus, a rise (fall) in the value of r would indicate a profit to someone holding a long (short) 

position. However, at time t, r is unknown; it can be thought of as a random variable. Let 

f(r,) denote the probability density function of r;  is the vector of the unknown parameters. 

At time t, the VaR over time horizon k and given probability p (0 < p < 1), i.e., 100 × (1 - 

p)% confidence level would be estimated as 

Long-position: Prob(r < -VaR) = p, i.e., Prob.(r  -VaR) = 1 – p  (2.1) 

Short-position: Prob(r > VaR) = p, i.e., Prob.(r  VaR) = 1 – p   (2.2) 

where Prob(.) denotes the probability measure. 

Thus, for a long-position holder, the VaR at 100 × (1 - p)% confidence level would be 

the p
th

 percentile of the distribution represented by f(r,). For the short position, this would be 

the (1 - p) percentile, i.e., the threshold value of r with right-tail probability p. 

2.1  Conventional Approaches of VaR Estimation: Direct approaches 

If r followed a normal distribution, VaR estimation would be very simple because the 

normal distribution is completely characterized by its first two moments, viz., mean and 
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variance. For a normal distribution N(,
2
) with mean  and variance 

2
, the VaR for the 

long position and short position would be calculated as: 










Position  Shortfor|σzμ|

Position Long for|σzμ|
VaR

p

p

    

 (2.3) 

where |.| denotes the absolute value and zp denotes the absolute value of p
th 

percentile for the 

N(0,1) distribution. The property of the N(0,1) distribution indicates that z0.01 = -2.33 and z0.05 

= -1.65. 

However, the practical problem is that the distribution of the observed r is usually far 

from normal, which may be detected through significant skewness, or kurtosis different from 

3 (i.e., excess kurtosis different from zero), or both. Thus, a deviation of the return 

distribution from normality leads to huge complexity and computational burden because one 

has to select an appropriate distributional form depending on the significance of skewness 

and excess kurtosis since the VaR is no longer a simple linear function of the mean and 

variance. The accuracy of the VaR estimates depends on how well the chosen functional form 

of f(r,) fits the observed returns. The function f(r,) may be identified either non-

parametrically or parametrically. Parametric modelling covers several different types of 

approaches that (1) model the complete portion of the distribution, such as fitting a suitable 

standard form of non-normal distribution (the Student-t distribution, Laplace distribution, 

hyperbolic distribution, etc.), fitting a mixture distribution (such as a mixture of two or more 

normal distributions)
1
, identifying ARCH/GARCH types of model, or (2) model only the tails 

of the observed return distribution, such as the tail-index approach. Thus, conventional 

approaches of VaR estimation differ in terms of the strategy and functional form adopted in 

identifying the appropriate form of f(r,). A wrongly identified f(r,) would lead to 

inaccuracy in the VaR estimates.  

In contrast, the transformation-based approach does not focus on identifying the 

appropriate form of f(r,). Instead, this indirect approach looks for a suitable continuous 

monotonic (one-to-one) function of r, g(r,), where  is the vector of the transformation 

parameters such that the probability distribution of g(r,) given  is (approximately) normal.   

2.2  Indirect Approach of VaR Estimation 

2.2.1  Transformations, percentiles, and VaR  

The transformation-based approach is outlined in detail in Samanta (2008). We 

summarise this approach for ready reference. Let a continuous random variable r be 

transformed as y = g(r, ), where  is a vector of the constant parameters. For given any value 

of , g(r,) is a continuous, monotonically increasing one-to-one function of r. For any real 

valued number , the events { g(r,) <  } and { r < g
-1

(, ) } are equivalent. This means that 

                                                 
1
 The Laplace distribution can also be thought of (derived) as a mixture distribution. However, without deviating 

from the main estimation issue, we consider the Laplace distribution as a standard form of distribution. 
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Prob[ g(r,) <  ] = Prob[r < g
-1

(,)]       (2.4) 

where Prob[.] denotes the probability measure. 

By replacing  in Eq. (2.4) with the p
th

 percentile of the distribution of g(r,), i.e., p, we 

get the p
th

 percentile of the distribution of r as  

p= g
-1

(p,)          (2.5)  

For estimating the VaR for r, we essentially need to estimate p for a given probability 

level p. If it were relatively easier to fit/approximate the distribution for g(r,) instead of the 

original r, one could first estimate p via g(.,) and invert it to get p. In fact, the popular log-

normal distribution adopts exactly the same strategy. It is known that the logarithm 

transformation of a log-normal variable follows a normal distribution. Therefore, we fit the 

distribution for the log-transformation of the random variable, instead of identifying the 

actual distribution of the original random variable. 

2.2.2  Transformation to normality and VaR estimates 

An additional degree of simplicity would be obtained if g(r,) were (approximately) a 

normal variable. By applying the properties of normal distribution, we would get p = {g + 

zp g}, where zp is the p
th

 percentile of standard normal distribution, and g and g are the 

mean and standard deviation of g(r, ), respectively. The major advantage here is that zp for a 

given p is known; therefore, the estimation of p effectively requires only the estimation of 

the mean and standard deviation of g(.,). As stated earlier, it is known that z0.01 = -2.33 and 

z0.05 = –1.65. Further, as the standard normal distribution is symmetric about zero, the values 

of z0.99 and z0.95 are 2.33 and 1.65, respectively. Conventionally, the VaR for market risk is 

estimated for p = 0.01, which means the 99% VaR for the given portfolio (corresponding to 

the return series r) is as follows: 

p= g
-1

(g + zp g, ), and VaR = |p|       (2.6)  

In reality, the transformation parameter  is seldom known; therefore, it has to be 

estimated from the data. Whether  is known or is estimated from the data, g(.,.) may not be 

perfect enough to transform any possible return distribution to exact normal distribution. 

However, as long as the transformed return is reasonably approximated by the normal 

distribution, the relationship in Eq. (2.6) holds in approximation. In other words:  

  VaR = |p|≈| g
-1

(g + zp g, ) |       (2.7)  

where the symbol ≈ indicates “approximately equal”, and |.| represents absolute value.  

This idea is intuitively appealing, is easy to understand, and requires simple 

computational efforts for implementation. However, we need to know the functional form of 

g(.,), and we also need to estimate the unknown transformation parameter . The accuracy 

of the VaR estimation depends on the power of g(.,.) to induce normality in the 

transformation. The theoretical literature on the families of transformations to 

normality/symmetry is quite vast; in the following section, we discuss some significant 

developments that are relevant to this study. 
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2.2.3  Indirect approach vs. direct approach 

The broad idea of the transformation-based indirect approach of VaR estimation with 

respect to the long position is diagrammatically presented in Fig. 2.1.  

 

Fig. 2.1: Diagrammatic Representation of Indirect Approach of VaR Estimation 

 

 

Panel A in Fig. 2.1 represents the unknown distribution of r; the probability level for 

VaR is fixed at 0.01 (i.e., the 99% confidence level). The observed returns are transformed 

through the one-to-one monotonically increasing function g(r,) (where  is the 

transformation parameter) such that g(r,) follows (near) normal distribution with the mean 

(g) and standard deviation (g). This transformed (near) normal distribution is shown in 

Panel B. Since this transformed distribution is approximately normal, its percentile is p ≈ g 

+ g zp, where 0 < p < 1, and zp represents the p
th

 percentile of the N(0,1) distribution, which 

can be computed easily from the tabulated values for the N(0,1) distribution. In particular, 

z0.01= -2.33 and z0.05 = -1.65. 

Unlike the indirect approach, the direct approach does not require Panel B (Fig. 2.1). 

Instead, the direct approach focuses on approximating the unknown distribution in Panel A 

(Fig. 2.1) with a suitable distribution, either parametric or non-parametric, and subsequently 

determining the appropriate percentile from the fitted distribution. 

2.2.4  Transformation of a random variable to normality 

Since the pioneering work by Box and Cox (1964), the research on transformation to 

normality has grown into a vast body of literature. Several families of transformation for 

improving the normality or symmetry of the distribution have been proposed, with varying 

degrees of success. We discuss only a few of these transformations that are found useful for 

the task at hand (Samanta, 2008). Of particular use to us are the modulus transformation 

proposed by John and Draper (1980) and the more recent transformation class proposed by 

Yeo and Johnson (2000). 



 7 

For transforming a symmetric distribution to near normality, John and Draper (1980) 

suggest the following modulus transformation for the original variable x, 

g
JD

(x,) = 








0ifδ         |)x|(1sign(x)log

0ifδ1}/δ|)x|sign(x){(1 δ

      (2.8) 

The transformation parameter  in Eq. (2.8) may be estimated by maximizing the 

likelihood function. The extant literature suggests that the transformation g
JD

(x,) is suitable 

for dealing with the kurtosis problem. However, it has serious drawbacks when applied to 

skewed distribution. In particular, if the distribution of x is a mixture of standard normal and 

gamma densities, the distributions of g
JD

(x,) would be bimodal and would be far from 

normal. To circumvent the significant skewness, Yeo and Johnson (2000) proposed a new 

family of transformations: 

g
YJ

(x,) = 























2,0)1log(

2,0)2/(}1)1{(

0,0)1log(

0,0/}1)1{(

2













xifx

xifx

xifx

xifx

   

(2.9) 

The parameter  of g
YJ

(x,) can be estimated using the maximum-likelihood technique 

(Yeo and Johnson, 2000). 

2.2.5  Implementation of the transformation-based approach 

A departure of the observed return r from normality can be identified via three possible 

scenarios: (i) if the measure of skewness (1) is non-zero; (ii) if the measure of kurtosis (2) 

is significantly different from 3 (i.e., if excess kurtosis is non-zero); (iii) if both the previous 

reasons hold true. Denoting the measure of skewness 1 = 3/2
(3/2)

 and the measure of 

kurtosis 2= 4/2
2
, where j denotes the j

th
 order central moment (j  2), and noting that for 

normal distribution, 1 = 0 and 2= 3, the following hypotheses are usually tested for 

normality.      

(i) H01: (1,2) = (0,3), which will be tested against the alternative hypothesis H11: 

(1,2)  (0,3). 

(ii) H02: 1 = 0, which will be tested against the alternative hypothesis H12: 1  0. 

(iii) H03: 2 = 3, which will be tested against the alternative hypothesis H13: 2 3. 

The normality null hypothesis H01 can be tested against H11 using Jarque and Bera‟s 

(1987) test statistics given by Q = n[ (b1)
2
/6 + (b2 - 3)

2
/24], where b1 and b2 are sample 

estimates of 1 and 2, respectively, and n is the number of observations used to derive these 

estimates. Under H01, Q is the asymptotically 
2
 variable with 2 degrees of freedom. Further, 

under normality, b1 and b2 are both asymptotically normally distributed with mean zero and 

variances 6/n and 24/n, respectively, implying that both [n (b1)
2
/6] and [n (b2-3)

2
/24] are 

asymptotically 
2
 variables with 1 degree of freedom.  
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For implementing the transformation-based approach, we first need to check whether 

the underlying distribution deviates from normal. The acceptance of the null hypothesis H01 

would indicate that the returns follow a normal distribution, which means that the VaR can be 

estimated easily via the expression given in Eq. (2.3). However, if H01 could not be accepted, 

the transformation-based approach may come in handy. In such cases, three possible 

scenarios could arise. First, if the distribution of r turns out to be skewed (signalled by the 

simultaneous non-acceptance of H02 and acceptance of H03), we may transform the original 

return r via g
YJ

(r,) to near normality (for a suitably chosen value for the constant ) and 

estimate VaR via the formula given in Eqs. (2.6)–(2.7). Second, if the distribution of r is 

symmetric with significant excess kurtosis (signalled by the simultaneous acceptance of H02 

and non-acceptance of H03), we may transform r to normality via the g
JD

(x,) transformation 

(for a suitably chosen value for the constant ) and estimate VaR using Eqs. (2.6)–(2.7). 

However, the distribution of r may be skewed with significant excess kurtosis (when neither 

H02 nor H03 could be accepted); in such cases, we use a composite transformation 

g
JD

(g
YJ

(r,), ) for suitably chosen values for (,).  

From a practical perspective, it would be convenient to transform non-normal r through 

the composite transformation g
JD

(g
YJ

(r,), ) for suitably chosen values for (,). In such 

cases, one has to examine whether the individual transformations g
YJ

(r,) and g
JD

(r,) do not 

distort the distributional properties of r if it truly follows a normal distribution, i.e., the 

transformations should preserve normality even if were applied on truly normally distributed 

variables. For the sake of simplicity, we employ this convenient strategy throughout the 

paper, i.e., we transform the observed return r through the transformation g
JD

(g
YJ

(r,), ) for 

suitably chosen values for (,). 

3.  Simulation Exercise to Evaluate Transformations to 

Normality 

It is difficult to theoretically compare and assess the power of the different families of 

transformation for achieving normality. In this paper, we attempt to address this issue using a 

simulation study. We generate observations randomly from various non-normal distributions 

(i.e., skewed and/or heavy-tailed, including mixture distributions), and we examine how the 

chosen transformations perform in terms of converting these random observations to 

normality. Further, we examine how efficient the transformation is in preserving normality 

when applied to truly normally distributed random observations. The alternative classes of 

distributions/models considered in this simulation study are:  

 Student-t distribution: Symmetric but fat-tailed distribution. 

 Skewed-Laplace: Skewed and fat-tailed distribution (which can be seen as a mixture 

distribution). 

 ARCH/GARCH: Model observed phenomenon of volatility clustering in returns, 

which leads to a fat-tailed unconditional return distribution. 

 Normal Distribution: This ensures that the transformation does not convert truly 

normally distributed random observations to some distribution other than normal. 
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In practice, it is quite possible that true normality remains undetected for various 

reasons or the transformation is applied on truly normal observations by chance. 

In such cases, the normality property should not be disturbed by the 

transformation. 

The alternative forms of distributions/models considered in the simulation study and the 

strategies adopted in drawing random observations from each of the chosen 

distributions/models are discussed in the following section. 

3.1  Data Generation from Alternative Distributions/Models 

3.1.1.  Student-t distribution (symmetric but heavy-tailed distribution) 

The Student-t distribution is symmetric and heavy-tailed. A random variable following 

a Student-t distribution with ν degrees of freedom (denoted by t-distribution) has the 

expected value 0 and variance ν/(ν − 2), if ν > 2. The skewness of the distribution is 0 if ν > 

3, and the excess kurtosis is 6/(ν − 4) if ν > 4. It may be noted that as the parameter ν 

becomes larger, the excess-kurtosis approaches zero, implying that the distribution t-

distribution tends towards normal distribution as the degree of freedom  tends to infinity. 

Further, the maximum value of excess kurtosis of a t-distribution when it exists (i.e., when  

> 4) is obtained when  = 5; the maximum value of excess kurtosis here is 6. 

A random observation from t-distribution can be obtained using a sample of (+1) 

observations drawn randomly from normal distribution (with known mean µ and unknown 

standard deviation σ) as   x  where,
S

1)(νμ)x(
t


 is the sample mean and S is the sample 

standard deviation. In our simulation exercise, we consider ν = 5, which rendered the 

maximum possible excess kurtosis value (i.e., 6) for t-distribution.  

3.1.2. Skewed-Laplace distribution 

The skewed-Laplace distribution is sometimes used to model the return distribution for 

financial portfolios. For example, Linden (2001) showed that if the stock returns conditional 

on the risk (variance) 
2
 follows a N(0,

2
) distribution, and if the risk 

2
 of the stock returns 

follows an exponential distribution with the probability density function g(
2
)=  exp[- 

2
] 

(where  > 0 is a constant parameter), the mixture (unconditional) distribution of returns 

would follow a Laplace distribution of the form f(x,) = ( /2)exp(- |x|), where |x| denotes the 

absolute value of x, - < x < . Alternatively, if we consider λ = 1/ , the distribution can be 

expressed as f(x,λ) = exp(-x/λ)/(2λ), λ>0 and - < x < . This distribution is symmetric about 

mean zero, but it has excess kurtosis 6.   

In a more general situation, a skewed-Laplace distribution can be obtained by 

considering different values for λ in positive and negative regions (λ = λ1 for the region x ≤ 0, 

and λ = λ2 for the region x > 0) in support of the variable x. The probability density function 

of a skewed-Laplace distribution (Linden, 2001; Puig and Stephens, 2007) can be expressed 

as: 

http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Excess_kurtosis
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

























0 xife
)λ(λ

1

0 x ife
)λ(λ

1

), f(x,

2

1

λ

|x|

21

λ

|x|

21

21        (3.1) 

The coefficients of skewness ( 1β ) and kurtosis (2) of the skewed-Laplace 

distribution are as follows: 

22

2

2

1

4

1

4

2
23/22

2

2

1

3

1

3

2
1

)λ(λ

)λ6(λ
3β and 

)λ(λ

)λ2(λ
β









       (3.2) 

Thus, the Laplace distribution is skewed positively (negatively) if λ2 > λ1 (λ2 < λ1). In 

particular, if λ1 = λ2, the distribution is symmetric around zero. Further, the Laplace 

distribution always has positive excess kurtosis, meaning that it is a heavy-tailed distribution. 

Puig and Stephens (2007) discuss three alternative approaches for drawing random 

numbers from a skewed-Laplace distribution. Of these three, we use the classical inverse 

distribution method using the random observations from a uniform distribution over the range 

(0,1). If u  (0,1) represents a random observation from the uniform (0,1) distribution, a 

random observation x from the skewed-Laplace distribution may be obtained by equating the 

cumulative distribution function (c.d.f.) of the skewed-Laplace distribution with u, i.e., by 

using the following expression: 

 




































 



1u
λλ

λ
 if

u))(1λ(λ

λ
logλ

λλ

λ
 u0 if           u

λ

λλ
logλ

x

21

1

21

2
e2

21

1

1

21
e1

    (3.3) 

The daily returns on financial assets are usually negatively skewed (see Linden, 2001 

for a discussion of the returns on stocks). Accordingly, in our simulation study, we 

considered λ2 < λ1. For our simulation exercise, we fix λ1 = 3 and λ2 = 2, which resulted in 

3.4438)  kurtosis excess (i.e. 6.4438β and 0.8107β 21  . 

3.1.3.  ARCH/GARCH model 

The volatility clustering phenomenon and the risk-return trade-off in financial market 

returns are sometimes modelled through Auto-Regressive Conditional Heteroscedastic 

(ARCH) or Generalised-ARCH (GARCH) models, or some of their more advanced forms. 

These models can lead to heavy-tailed unconditional distributions of the returns. The broad 
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structures of the ARCH and GARCH models considered in the simulation study
2
 are given 

here: 

ARCH model: Xt = 0 + 1 Xt-1 + 2 Xt-2 + …… + l Xt-l + t   (3.4) 

),0( ~ |ε 1t tt hN  and 
2

ptp

2

1t10t e.....eh        (3.5) 

where t-1 is the information set available at time t-1; t is the usual noise; th is the 

conditional variance of t; l and p are positive integers; and 0 > 0, j  0, j = 1,2, ….,p, k‟s, 

k = 1,2,…..,l are constant parameters.   

 

GARCH model: Xt = 0 + 1 Xt-1 + 2 Xt-2 + …… + l Xt-l + t   (3.6) 

  

),0(~ψ|ε 1t tt hN  and k-t

q

1k

k

p

1j

2

jtj0t h βeααh 


      (3.7) 

where t-1 is the information set available at time t-1; t is the usual noise; th is the 

conditional variance of t; p and q are positive integers; i‟s, i = 1,2,…..,l 0 > 0, j  0, j = 

1,2, ….,p, and k  0, k = 1,2,….,q, are constant parameters.   

Eq. (3.5) is known as the ARCH(p) process, and Eq.(3.7) is known as the Generalised-

ARCH(p,q) process, i.e., the GARCH(p,q) process. The unconditional/stationary variance of 

the ARCH(p) process exists if 1α
p

1j

j 


; the unconditional variance is .α1/α
p

1j

j0 
















 The 

GARCH(p,q) process requires 1βα
p

j

q

1k

kj 












 



 for unconditional variance to exist; the 

expression for the variance is .βα1/α
p

1j

q

1k

kj0 












 

 

 

If et in the ARCH process (including the GARCH process) is conditionally normal, its 

unconditional distribution is symmetric (Bera and Higgins, 1993). Further, the ARCH model 

is known to have greater kurtosis than that of normal distribution (i.e., excess kurtosis), 

though the close-form expression for kurtosis of the GARCH process is not known. For 

special cases, however, Engle (1982) provided the expression for kurtosis for the ARCH(1) 

process as 
 

13α if  ,
3α1

6α
3

3α1

α1
3

)][Var(e

)E(e 2

12

1

2

1

2

1

2

1

2

t

4

t 



















 ; Bollerslev (1986) provides 

the expression for kurtosis of the GARCH(1,1) process as  

 
.1)3αβ2α(β if ,

3αβ2αβ1

6α
3

)][Var(e

)E(e 2

111

2

12

111

2

1

2

1

2

t

4

t 


  If kurtosis does exist for 

                                                 
2
 Bera and Higgins (1993) provide a detailed account of the properties of ARCH models (including the original 

Generalised-ARCH models and subsequent developments). 
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the ARCH(1) and GARCH(1,1) processes, it is greater than 3 (i.e., greater than the kurtosis of 

normal distribution), meaning that the unconditional distribution of t is heavy-tailed. 

In our simulation exercise, we generated random observations from the ARCH(1) 

process with the specification   

)hN(0,~ψ|ε t1tt   and 2

1tt 0.4ε0.9h        (3.8) 

The unconditional variance of t in this case is 0.9/(1-0.4) = 1.5, and the kurtosis is 

 













2

1

2

1

3α1

6α
3 4.8462 (i.e., excess kurtosis = 1.8462). Following Bera and Higgins (1993), 

the data-generating process adopted for drawing random observations from the ARCH(1) 

process is   
2

1-ttttt 0.4ε0.9h and hηε  , where t ~ N(0,1)     (3.9) 

For drawing a random sample of size n from the ARCH(1) process in Eq. 3.8, we 

assume the process began at time t = 0, and we fix the initial value to be h0 = 1.5, which is the 

unconditional variance of the chosen ARCH(1) process. The initial value of the process 0 is 

fixed at  hηε 000  , where 0 is a randomly drawn observation from N(0,1). Thereafter, 

we repeatedly generate the observations of t (500 + n) times; in each repetition, we first draw 

a random observation of t from N(0,1), and subsequently derive the random observation for 

t following the generating process given in Eq. (3.9). Finally, the last n-observations (of the 

500 + n observations thus generated) are considered for the simulation exercise; the first 500 

observations are excluded in an attempt to eliminate possible initial value effect. 

The specification of the GARCH model considered in the simulation exercise is given 

in Eq. (3.10). 

 
),0(~ tt hN  and 1-t

2

1tt h 0.40.2ε0.9h        (3.10) 

The unconditional variance of t in Eq. (3.10) is [0.9/(1-0.2-0.4)] = 3, and the kurtosis is  

 













2

111

2

1

2

1

3α2-1

6α
3


4.6364 (i.e., excess kurtosis = 1.6364). Similar to the case of 

the ARCH(1) process, the data-generating process for the chosen GARCH(1,1) process is  

1t

2

1-ttttt h 0.40.2ε0.9h and hηε  , where, t ~ N(0,1)   (3.11) 

 

The strategy adopted for drawing n observations from the GARCH process is similar to 

that for the ARCH process, except that in this context, the expression for ht depends on both 

t-1 as well as ht-1, as given in Eq. (3.11).  
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3.2  Simulation strategy 

For the simulation study, we considered several alternative skewed and/or heavy-tailed 

distributions for returns (log-returns). As the returns can take positive as well as negative 

values, we considered the distributions to have real-line as support. For each chosen 

distribution/model, the simulation study was carried out in the following steps: 

 Step 1: Draw n random observations from the given distribution/model. Let these 

observations be represented by r1, r2, ….. , rn. In our simulation exercise, we chose n = 

500. 

 Step 2: Apply the transformation to normality on these observations. For simplicity, the 

normality transformation is conducted in two phases irrespective of the data-generating 

distribution/process.  

First, the original observations r1, r2, ….. , rn are passed through the g
YJ

(.,) 

transformation to reduce/remove possible skewness. Let * be the estimated value of the 

parameter .  

Second, the observations g
YJ

(rt,*), t=1,2,…,n are passed through the g
JD

(.,) 

transformation to eliminate/cure possible excess kurtosis. Let * be the estimated value 

of the parameter .  

Thus, for the original observation rt, the final transformed observation yt, is obtained as yt 

= g
JD

[ g
YJ

(rt, *), *], t=1,2,….,n. The transformation parameters  and  may be 

estimated by maximizing the likelihood function (maximum-likelihood method). 

Further, we estimated the parameter heuristically by minimizing the magnitude of 

skewness/excess kurtosis, which we call the heuristic approach.  

 Step 3: Compute the measures of skewness and excess kurtosis based on the 

transformed observations y1, y2, …. ,yn. At the i
th

 repetition, let Si and Ki represent the 

measures of skewness and excess kurtosis thus calculated. 

If normality is achieved, both these values should be zero (or statistically insignificant). 

Statistical tests were performed on y1, y2, …. ,yn in each repetition for the null 

hypotheses of (i) skewness = 0; (ii) excess kurtosis = 0; and (iii) normality (Jarque-Bera 

test). Each test was performed for two alternative sizes (0.01 and 0.05).   

 Step 4: Repeat steps 1–3 T times. In our simulation exercise, T was fixed at T = 10,000. 

Compute the average values of Si and Ki for i=1,2,…,T. If the transformation were 

successful in inducing normality, both these averages would be close to zero. Further, 

compute how frequently (proportion of T repetition) each of the three null hypotheses 

has been accepted: (i) skewness = 0; (ii) excess kurtosis = 0; and (iii) normality test, i.e., 

joint test of skewness = 0 and excess kurtosis = 0 (Jarque-Bera test). Compute this 

proportion separately under 1% and 5% levels of significance. A greater proportion of 

acceptance of these null hypotheses would indicate better performance of the 

transformation in achieving normality. 
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This 4-step simulation strategy was implemented on the random observations drawn 

from different non-normal distributions (i.e., skewed/leptokurtosis distributions such as the 

Student-t distribution and Laplace distribution) and data-generating processes (such as 

ARCH/GARCH that model volatility-clustering phenomenon of financial market returns and 

can capture heavy-tailed return distribution). The process of simulation was repeated 10,000 

times for any given distribution/model, and in each repetition, 500 random observations were 

drawn from the given distribution/model. 

3.3  Simulation Results 

The simulation exercise was intended to examine how good the normality 

transformation was in transforming the random observations from different probability 

distributions or data-generating models/processes.  

For a given distribution/model, we first drew 500 observations randomly and applied 

the normality transformation. The transformation parameters were chosen in two ways: 

maximum-likelihood method and heuristic approach.   

Under each strategy of choosing the transformation parameters, we computed the 

measure of skewness and excess kurtosis for the transformed observations. If the 

transformations were good, both these measures would be zero or statistically insignificant. 

Therefore, we tested the significance of skewness, excess-kurtosis, and joint skewness-excess 

kurtosis (Jarque-Bera test of normality using skewness and excess kurtosis).  

The simulation exercise was repeated 10,000 times separately for each class of 

probability distribution or model. The simulated average values of the measures of skewness 

and excess kurtosis of the transformed observations based on the 10,000 repetitions are 

reported in Table 3.1. The proportion of times (out of 10,000) each of the three hypothesis 

related to the normality (H01, H02, and H03) of the transformed observations were accepted at 

the 1% and 5% levels of significance are presented in Table 3.2. If the transformation 

successfully converted a distribution to normality, the corresponding proportion of 

acceptance of the null hypothesis would be close to 0.95 for the 5%level of significance and 

0.99 for the 1% significance level. 
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Table 3.1: Normality of Transformed Observations  

(Measures of Skewness & Excess Kurtosis) 

True Model/ 

Distribution of Original  

Observations  

(which were transformed to 

Normality) 

 

Average  

Skewness
#
 

 

Average   

Excess Kurtosis
#
 

(A) Maximum-Likelihood Estimates of Transformation Parameters 

   

Normal 0.0004 -0.0187 

Student-t distribution (= 5) 0.0001 0.1701 

Laplace (1 = 3, 2 = 2) 0.1526 0.1014 

ARCH(1) -0.0002 0.1513 

GARCH(1,1) 0.0002 0.0580 

 

(B) Heuristic Approach to Estimate Transformation Parameters 

   

Normal 0.0001 0.0001 

Student-t distribution (= 5) 0.0001 0.0000 

Laplace (1 = 3, 2 = 2) 0.1624 0.0001 

ARCH(1) -0.0003 -0.0001 

GARCH(1,1) -0.0001 -0.0000 
# Based on 10,000 repetitions, with 500 observations in each repetition.  

 

Table 3.2: Proportion of Acceptance of Null Hypotheses Related to  

Normality of Transformed Observations
#
  

 

True Distribution/Model of 

Original  

Observations  

(which were transformed to 

Normality) 

Null Hypothesis Tested (Test 

Size = 0.01) 

Null Hypothesis Tested (Test 

Size = 0.05) 

1 = 0 2 = 0 (1, 2) 

 = (0,0) 

1 = 0 2 = 0 (1, 2)  

= (0,0) 

 

(A) Maximum-Likelihood Estimates of Transformation Parameters 

 

Normal 1.0000 0.9991 0.9994 1.0000 0.9965 0.9988 

Student-t distribution (=5) 0.9998 0.9930 0.9969 0.9983 0.9637 0.9843 

Laplace (1 = 3, 2 = 2) 0.9991 0.9992 0.9985 0.9558 0.9931 0.9765 

ARCH(1) 1.0000 0.9810 0.9908 1.0000 0.9422 0.9743 

GARCH(1,1) 1.0000 0.9946 0.9975 1.0000 0.9820 0.9927 

 

(B) Heuristic Approach to Estimate Transformation Parameters 

 

Normal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Student-t distribution (=5) 0.9997 1.0000 0.9999 0.9954 1.0000 0.9995 

Laplace (1 = 3, 2 = 2) 0.9731 1.0000 0.9959 0.8290 1.0000 0.9599 

ARCH(1) 1.0000 1.0000 1.0000 0.9998 1.0000 1.0000 

GARCH(1,1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

# Based on 10,000 repetitions, with 500 observations in each repetition.  
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The simulated results presented in Table 3.1 show that the transformation strategy was 

able to transform the observations drawn from alternative non-normal distributions/models 

(the Student-t distribution, skewed-Laplace distribution, and ARCH and GARCH models) to 

normality reasonably well. This is indicated by the relatively low average values of the 

measures of skewness and excess kurtosis (although for the Laplace distribution, the 

skewness does not appear to be removed completely). The simulation results presented in 

Table 3.2 are quite interesting. When the transformation parameters are estimated through the 

maximum-likelihood method (the grid search method was adopted in this case), the 

proportion of acceptance of the null hypotheses is consistent with the size of the test. Even in 

the case of the heuristic approach to parameter estimation, the performance is equally good in 

all aspects except when testing 1 = 0 at the 5% level of significance with the data originally 

drawn from the Laplace distribution (the corresponding proportion of acceptance 0.8290 is 

quite low as compared to the expected value of 0.95).   

4.  Empirical Analysis 

The simulation exercise points out that the transformation considered above performs 

reasonably well in terms of converting the chosen non-normal distributions to (approximate) 

normality. Given that the chosen class of distributions cover the typically observed return 

distributions, the estimation of VaR through the transformation-based method appears to be 

quite sensible. Indeed, the simulated results provide an explanation for the empirical results 

reported by Samanta (2008) in support of the transformation-based VaR measurement. 

However, it is imperative to examine the robustness of such empirical findings over time, 

particularly in the years following the global financial crisis. In this section, we report the 

results of the empirical analysis.  

4.1  Data 

The performance of a VaR measurement technique may be examined with respect to 

certain real-life portfolios, i.e., the portfolios held by banks or investors. However, such 

portfolios are held privately, and hardly any information about their composition and other 

details are made public. This situation resulted in scarce reporting of empirical results based 

on real-life portfolios.
3
 Most of the prior empirical studies relied on publicly available 

historical data, such as asset prices or indices.
4
 Similarly, we employ daily data on the 

exchange rate of the Indian Rupee (INR) with respect to four major international currencies 

in India, viz., US Dollar, British Pound Sterling, Euro, and Japanese Yen; these currencies 

were covered in Samanta (2008) as well. The choice of four common exchange rates allows 

for the comparison and robustness check of the empirical results over time.    

                                                 
3
 Berkowitz and O‟Brien (2002) is one such rare empirical study using proprietary data of banks. 

4
 See Bauer (2000); Christoffersen et al. (2001); Mikael (2001); Sarma et al. (2003); Samanta (2008). 
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The daily exchange rates covering the period from January 1, 2009 to March 31, 2014 

were collected from the database on the Indian economy available on the RBI Website 

(http://www.rbi.org.in). For this period, we obtained 1268 daily observations for each of the 

four exchange rates considered. For our analysis, “return” refers to “log-return”. For any 

given exchange rate, the return (i.e., log-return) on a particular day, say the t
th

 day, is 

computed as follows: 

Rt = 100* [ loge(Pt) – loge(Pt-1) ]       (4.1) 

where Pt and Rt denote the values of the given exchange rate and the daily return on t
th

 day, 

respectively.  

We assess the performance of the transformation-based VaR model using widely used 

techniques: the normal (variance-covariance) method and the extreme value approach using 

tail-index. In the latter approach, the tail-index is estimated via two alternative techniques, 

viz., Hill‟s estimator (Hill, 1975) and the ordinary least squares (OLS) estimator discussed in 

van den Goorbergh (1999). Thus, we evaluate the performance of four competing VaR 

models: 

(i) Normal method: VaR was estimated under the assumption of the normality of log-

return. 

(ii) Extreme value theory : tail-index was estimated via Hill‟s estimator  

(iii) Extreme value theory: tail-index was estimated via OLS regression 

(iv) Transformation-based approach  

The description of the direct VaR estimation techniques considered here are available 

in the standard literature. Appendix A provides a summary for ready reference.  

Samanta (2008) assessed the performance of the transformation-based approach along 

with two competing VaR methods: the normal/covariance method (which assumes normality 

of return); and an approach based on tail-index estimated using Hill‟s estimator. Thus, we 

undertake our empirical assessment against a broader set of competing techniques (the 

approach measuring tail-index through regression analysis is an additional alternative in this 

study). Competing methods are applied for univariate series of daily portfolio/asset returns. 

The observed phenomenon of volatility clustering could be modelled through the classes of 

conditional heteroscedastic models. Alternatively, since we know that conditional 

heterescedasticity induces heavy-tails in unconditional distribution, we could put efforts into 

modelling the fat-tailed unconditional distribution of returns.   

We consider 1-day VaR, expressed in percentage form at 99% confidence level. This 

means that for a good estimate of VaR, the theoretical probability of the realized daily return 

exceeding VaR equals 0.01; i.e., VaR exception/violation may occur in one out of 100 days. 

For underestimated (overestimated) VaR, the observed frequency of VaR exception would be 

significantly higher (lower) than 1%.  

On any given date (say the t
th

 day), we estimate VaR for the (t+1)
th

 day or future dates 

by adopting two alternative databases: full-sample estimates, obtained using historical returns 

from the starting time point of the database till the estimation date; and rolling-sample 

estimates, which are computed based on a fixed number of most recent returns (i.e., the 
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returns on the date of computation as well as a pre-specified number of immediate preceding 

days). The number of latest returns considered for the rolling-sample estimate is called the 

rolling-sample/window size; in this study, the rolling sample included returns for the last 500 

days.  

4.2  Testing for Normality of Returns 

The presence of volatility clustering in the market indicates that asset returns would 

seldom follow normal distribution unconditionally. Therefore, our empirical study begins by 

testing for the normality of returns (i.e., log-returns). The empirical results related to the 

normality hypotheses are given in Table 4.1. Table 4.1 shows that the Jarque-Bera test could 

not accept the normality hypothesis at any conventional level of significance (the p-values of 

the test statistics corresponding to the null hypotheses were much lower than 0.01). Further, 

significant excess kurtosis appears to be the main source of deviation from normality for all 

the return series except for US Dollar, where skewness is also statistically significant.  

Table 4.1: Testing Normality of Returns on Exchange Rates 

Asset/ 

Portfolio 

Measure of 

Skewness 

2

1  for Skewness 

(Testing H02) 

Excess 

Kurtosis 

2

1  for Excess 

Kurtosis 

(Testing H03) 

Jarque-Bera 

Statistics 

(Testing H01) 

US Dollar 0.2342** 11.5781** 

(0.0000) 

3.2987** 574.4640** 

(0.0000) 

586.0420** 

(0.0000) 

 

Pound Sterling -0.0819 1.4170 

(0.2339) 

2.3183** 283.7227** 

(0.0000) 

285.1397** 

(0.0000) 

 

Euro 0.0575 0.6978 

(0.4035) 

3.0266** 483.5957** 

(0.0000) 

484.2935** 

(0.0000) 

 

Japanese Yen -0.0101 0.0214 

(0.8838) 

1.5208** 122.0979** 

(0.0000) 

122.1192** 

(0.0000) 

Figures in parentheses indicate significance level (i.e., p-value).     

* and ** indicate significance at 5% and 1% levels, respectively. 

4.3  Empirical Results: Transformations of log-returns to normality 

The transformation parameters (,) are estimated using two alternative approaches: 

maximum likelihood and heuristic. For each of the alternatives, the optimization is done (in 

two stages, as discussed above) through a grid search, i.e., by looking for optimal values of  

and  from a set of potential alternatives. Based on the empirical assessment, the set of 

potential values for  is {-2.000, -1.999, ………, 1.999, 2.000} and that for  is {0.000, 

0.001, ……, 1.999, 2.000}. In simulation exercises, the estimation of these parameters using 

either the maximum-likelihood approach or the heuristic approach produces rather similar 

results; therefore, we adopted the maximum-likelihood approach in empirical analysis. Table 

4.2 presents the maximum likelihood estimates of (,) for transforming each log-return to 

(near) normality.  
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Table 4.2 also presents the results of the normality tests for all the transformed returns. 

The normality transformation could cure the skewness/kurtosis problem with respect to 

almost all the log-return series except that of Euro, where some bit of kurtosis persists. The 

interesting point here is that the degree of excess kurtosis for the transformed returns on Euro 

is a lot milder, while H03 for the transformed series is accepted at the 1% level of significance 

(though not at 1% level) as evident from the corresponding p-value of 0.0382; the same 

hypothesis for original returns on Euro could not be accepted at any of these conventional 

levels.  

Table 4.2: Testing Normality of Transformation of Returns 

Asset/ 

Portfolio 

Transform-

ation 

Parameters 

Measure 

of 

Skewness 

2

1  for 

Skewness 

(Testing H02) 

Excess 

Kurtosis 

2

1  for Excess 

Kurtosis 

(Testing H03) 

Jarque-Bera 

Statistics 

(Testing H01) 

US Dollar 

0.124δ̂

917.0λ̂



  
-0.0201 0.0853 

(0.7702) 

0.1234 0.8033 

(0.3701) 

0.8886 

(0.6413) 

 

 

Pound Sterling 

0.265δ̂

1.036λ̂



  
-0.0289 0.1766 

(0.6743) 

0.1241 0.8132 

(0.3672) 

0.9898 

(0.6096) 

 

 

Euro 

0.305δ̂

0.993λ̂




 

-0.0436 0.4006 

(0.5268) 

0.2853* 4.2958* 

(0.0382) 

4.6964 

(0.0955) 

 

 

Japanese Yen 

0.475δ̂

999.0λ̂




 

0.0041 0.0035 

(0.9525) 

0.0769 0.3125 

(0.5761) 

0.3161 

(0.8538) 

Figures in parentheses indicate significance level (i.e. p-value). The symbol ^ indicates estimates.  

* and ** indicate significance at 5% and 1% levels, respectively.  

 

4.4  Empirical Evaluation of VaR Estimates/Models 

The VaR numbers estimated through a particular technique may be evaluated using 

different criteria based on the frequency of VaR-exception, the magnitude of VaR-exception 

(i.e., the excess loss over VaR at the instance of a VaR-exception), or both. The frequency-

based evaluation of a VaR model can be done through a suitable test of the proportion of 

VaR-exception, such as statistical backtesting (suggested by regulators or the Basel Accord, 

more standard statistical tests (such as those suggested by Kupiec, 1995), or further 

sophisticated tests (such as that proposed by Christoffersen, 1998; Christoffersen et al., 

2001). The severity of loss depends on the magnitude of excess loss, which is incorporated in 

the frequency-based evaluation criteria. Several assessment criteria incorporating the 

frequency as well as the magnitude of excess-losses were proposed by Lopez (1998) and 

Sarma et al. (2003).   

In our empirical evaluation, the backtesting period covers the last 500 days in the 

database. On every backtesting day, the 1-day VaR at 99% confidence level was estimated 
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based on all competing models/techniques using the rolling-sample (with size 500 days) and 

the full-sample strategies. Further, VaR was estimated separately for the left-tail and the 

right-tail of the return distributions (i.e., for long and short financial positions, respectively, 

on the asset). The alternative assessment/evaluation criteria involved two frequency-based 

assessments as well as two loss functions. 

4.4.1  Frequency of VaR-exception 

A simple criterion is to examine whether the proportion of VaR-exception over a 

number of days (i.e., the backtesting period) is consistent with the confidence level of the 

VaR numbers. For example, for a good VaR number representing maximum loss at 99% 

confidence level, the theoretical probability of loss being above the VaR estimate would be 

0.01. Thus, ideally, for about 1% of the backtesting days, one may expect VaR exception. 

However, VaR-exception significantly higher than 1% would indicate the under-estimation of 

VaR, a situation that worries regulators.
5
 Regulators may like to see a VaR model that does 

not generates VaR-exception at a frequency higher than 1%. Therefore, in order to assess a 

VaR model, one may assign a score of 1 at the instances of a VaR-exception, and 0 

otherwise. Finally, the total score over a period of backtesting days (i.e., the sum of the daily 

scores over all the backtesting days) can be expressed in percentage form, and we can 

examine whether the observed percentage is close to the expected 1% level. A lower 

observed score or percentage of VaR-exception would be preferred by the regulators. Thus, 

on any backtesting day (say the t
th

 day), each VaR model is assigned a score Zt as follows: 










1t|tt

1-t|tt

t VL if0

V L if1
Z         (4.2) 

where Vt|t-1 and Lt are the VaR estimated for the t
th

 day given the data/information up to time 

(t-1) and the observed loss on the t
th

 day, respectively. 

The total score over n backtesting days would be Z = (Z1 + Z2 + ….. + Zn), i.e., the 

observed percentage of VaR-exception would be (100 × Z/n). By construction, 0  Z  n; 

therefore, 0  100 × Z/n  100. For a good VaR model, the observed value of (100 × Z/n) 

should be close to the theoretical value, i.e., 1 (or less from the regulators‟ perspective) for 

VaR estimates at the 99% confidence level. 

For the empirical implementation of this scoring mechanism, the strategy adopted in 

this study to compare loss and estimated VaR is similar to that used in Bauer (2000). The 

backtesting period of 500 days is first partitioned into 50 blocks, each covering 10 days. 

Subsequently, the 99% daily VaR is estimated for day 1 of Block 1, which is assumed to 

remain unchanged throughout the block; we assigned scores to all 10 days in the block by 

                                                 
5
 Regulators may not be too concerned (in terms of the level of capital adequacy) if VaR-exception occurs at a 

frequency less than 1%, for instance, indicating the possible over-estimation of VaR. However, an individual 

bank or investor may have reasons to avoid too much of such VAR over-estimation from the perspective that 

maintaining additional capital (over the ideal amount) may adversely affect profitability. Accordingly, one can 

analyse such situations by selecting appropriate criteria in line with the particular form of loss-function 

suggested by Sarma et al. (2003) or even the more general form of loss function proposed by Lopez (1998). 
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comparing the daily loss/returns with the estimated VaR. Finally, repeating the process for all 

the 50 Blocks, we calculated the values of Z, which would provide the basis for evaluating a 

VaR model.
6
 We report the values of Z expressed in percentage form (i.e., percentage of 

VaR-exception over 500 backtesting days) in Table 4.3. As can be seen from Table 4.3, the 

frequency of VaR exceptions varies considerably across the competing models; at times, it 

appears to be considerably higher than the 1% threshold. The normality assumption for return 

distribution is seen to produce relatively higher VaR-exception. The tail-index approaches 

(which are usually believed to capture fat-tails better than the normal approach does), 

generate relatively less frequent VaR-exceptions. Interestingly, the performance of the 

transformation-based approach is not bad compared to that of tail-index approaches. Despite 

being simple to understand, the performance of the transformation-based approach appears to 

be uniformly better than that of the other alternatives in almost all the cases, i.e., short and 

long positions on different assets except for long position on Japanese Yen (in both full-

sample and rolling-sample results).   

Table 4.3: Percentage of VaR Violations by Competing Models 

Asset/ 

Portfolio 

Left-Tail (Long Financial Position)  Right-Tail (Short Financial 

Position) 

Normal 

Method 

Tail-Index  Trans-

based 

Method 

 Normal 

Method 

Tail-Index Trans-

based 

Method 

Hill’s  OLS   Hill’s  OLS  

(A) Full-Sample Results 

 

US Dollar 2.4 2.0 2.0 1.6  2.6 2.0 1.8 1.8 

Pound Sterling 1.0 0.4 0.4 0.4  1.4 1.2 1.2 1.2 

Euro 1.2 0.6 0.6 0.6  1.2 1.2 1.2 1.2 

Japanese Yen 1.4 0.6 0.6 0.8  1.8 1.6 1.6 1.4 

 

(B) Rolling-Sample Results 

 

US Dollar 2.2 2.2 1.8 1.8  2.2 1.8 1.8 1.6 

Pound Sterling 1.8 1.8 1.6 1.6  2.0 2.0 1.6 1.2 

Euro 1.4 0.6 0.8 0.6  1.2 1.2 1.2 1.2 

Japanese Yen 2.0 1.0 1.0 1.2  2.0 1.6 1.6 1.4 

 

4.4.2  Results of Kupiec’s test 

A statistical test of whether the observed frequency of VaR-exception, i.e., the values of 

Z, can be considered equal to their theoretical counterparts is provided by Kupiec (1995). The 

statistics for Kupiec‟s test are given by  

                                                 
6
 The regulators‟ backtesting (as suggested in the Basel Accords) can be implemented by using the proportion 

Z/n (or by expressing it in percentage form). We report the values of Z obtained in the empirical exercise, which 

can be used easily for the regulators‟ backtesting, which is primarily concerned with the underestimation of 

VaR. In addition, we employ the test suggested by Kupiec (1995), which assesses model accuracy by taking in 

to account too low as well as too high frequencies of VaR-exception (i.e., both under-estimation and over-

estimation of VaR). 
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where Z denotes the number of VaR-exceptions over n backtesting days, and p is the 

probability level of VaR (in this case, n = 500 and p = 0.01).  

Under the null hypothesis of normality, the LR-statistic follows a χ
2
-distribution with 1 

degree of freedom. Ideally, greater closeness between Z/n and p would indicate greater 

accuracy of VaR estimates (i.e., the corresponding VaR model). The null hypothesis Z/n = p 

may be tested against the alternative hypothesis (Z/n) ≠ p.  

The results for Kupiec‟s test are given in Table 4.4. It is interesting to note that for 

some assets (such as US Dollar and Japanese Yen), the normal method estimates inaccurate 

VaR numbers. In all the other cases, the accuracy level appear to be not significantly different 

to that in the competing models. This indicates that even if a transformation-based indirect 

approach (which is easy to understand and intuitively appealing) is used, we would usually 

end up generating VaR estimates as accurate as those obtained from more complex methods 

(such as a tail-index-based approach, for instance). However, this assessment depends solely 

on the frequency of VaR-exceptions, which is only one component of risk or severity of loss. 

This assessment did not incorporate magnitude of excess loss, the other component of risk or 

severity of excess loss. Such evaluations of VaR models are done using two alternative loss-

functions as described earlier. 
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Table 4.4: Kupiec’s Test—Observed Value of Test Statistics 

Asset/ 

Portfolio 

Left-Tail (Long Position)  Right-Tail (Short Position) 

Normal 

Method 

 

Tail-Index  Trans.-

based  

Method 

 Normal 

Method 

 

Tail-Index Trans.-

based  

Method 

Hill’s  OLS   Hill’s  OLS  

(A) Full-Sample Results 

 

  

US Dollar 7.11** 

(0.0077) 

3.91* 

(0.0479) 

3.91* 

(0.0479) 

1.54 

(0.2149) 

 8.97** 

(0.0027) 

3.91* 

(0.0479) 

2.61 

(0.1060) 

2.61 

(0.1060) 

 

Pound Sterling 0.00 

(1.0000) 

2.35 

(0.1250) 

2.35 

(0.1250) 

2.35 

(0.1250) 

 0.72 

(0.3966) 

0.19 

(0.6630) 

0.19 

(0.6630) 

0.19 

(0.6630) 

 

Euro 0.19 

(0.6630) 

0.94 

(0.3315) 

0.94 

(0.3315) 

0.94 

(0.3315) 

 0.19 

(0.6630) 

0.19 

(0.6630) 

0.19 

(0.6630) 

0.19 

(0.6630) 

 

Japanese Yen 0.72 

(0.3966) 

0.94 

(0.3315) 

0.94 

(0.3315) 

0.22 

(0.6414) 

 2.61 

(0.1060) 

1.54 

(0.2149) 

1.54 

(0.2149) 

0.72 

(0.3966) 

 

(B) Rolling-Sample Results 

 

US Dollar 5.42* 

(0.0199) 

5.42* 

(0.0199) 

2.61 

(0.1060) 

2.61 

(0.1060) 

 5.42* 

(0.0199) 

2.61 

(0.1060) 

2.61 

(0.1060) 

1.54 

(0.2149) 

 

Pound Sterling 2.61 

(0.1060) 

2.61 

(0.1060) 

1.54 

(0.2149) 

1.54 

(0.2149) 

 3.92* 

(0.0479) 

3.92* 

(0.0479) 

1.54 

(0.2149) 

0.19 

(0.6630) 

 

Euro 0.72 

(0.3966) 

0.94 

(0.3315) 

0.22 

(0.6414) 

0.94 

(0.3315) 

 0.19 

(0.6630) 

0.19 

(0.6630) 

0.19 

(0.6630) 

0.19 

(0.6630) 

 

Japanese Yen 3.91* 

(0.0479) 

0.00 

(1.0000) 

0.00 

(1.0000) 

0.19 

(0.6630) 

 3.91* 

(0.0479) 

1.54 

(0.2149) 

1.54 

(0.2149) 

0.72 

(0.3966) 

Figures within parentheses denote significance level (i.e., p-value); * and ** denote significance at 5% and 1% levels of 

significance, respectively. 

 

4.4.3  Evaluation of VaR models using loss functions 

The idea of incorporating the magnitude of excess loss while evaluating VaR models 

was first implemented by Lopez (1998) by assigning certain scores/loss-function values to a 

VaR model. Further, Sarma et al. (2003) suggested a few specific forms of such evaluation 

criteria, including the regulator‟s loss-function and the firm‟s loss-function. We employ the 

regulators‟ loss-function proposed by Sarma et al. (2003), which assigns a score St to a model 

on the t
th

 backtesting day through the following formulation:  



 

 

otherwise0

VLif)V(L
S 1t|tt

2

1t|tt

t        (4.4) 
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where Vt|t-1 and Lt represent the estimated VaR for the t
th

 day using data/information up to 

time (t-1) and the observed loss on t
th

 day, respectively. 

The overall score S over n backtesting days is calculated as S = S1 + S2 + ….. + Sn. A 

model with lower S value would be preferred over others. It may be noted here that a VaR 

model gets penalized for each instance of VaR-exceptions; however, the magnitude of the 

penalty score St depends on the magnitude of excess loss (instead of a constant penalty score 

value of 1 that would be assigned in case of a frequency-based model evaluation irrespective 

of the severity of excess loss). However, in one of the loss-functions proposed by Lopez 

(1998), excess loss is considered along with the frequency as follows:   



 

 

otherwise0

VLif)V(L 1
S 1t|tt

2

1t|tt

t
       (4.5) 

where Vt|t-1 and Lt represent the estimated VaR for the t
th

 day using data/information up to 

time (t-1) and the observed loss on the t
th

 day, respectively. Accordingly, lower overall score 

S = S = S1 + S2 + ….. + Sn over n back testing days would be preferred in selecting the VaR 

model. 

We present the values of the score based on the loss-function given by Sarma et al. 

(2003) in Table 4.5 and those based on Lopez‟s loss-function in Table 4.6. These tables show 

that for short positions on financial assets (i.e., right-tail of return distributions), the 

performance of the transformation-based method is uniformly the best across all the assets, 

whether it is a full-sample estimate or a rolling-sample estimate. In the case of long positions 

(left-tail), the result is mixed. In this case as well, the transformation-based approach always 

performs better than the normal method; on a few occasions, the former performs better than 

the tail-index approaches as well. Thus, the transformation-based approach appears to be the 

sensible choice for estimating VaR numbers. 
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Table 4.5: Value/Score of Regulatory Loss-Function proposed by Sarma et al. (2003) 

(Eq. 4.4) 

Asset/ 

Portfolio 

Left-Tail (Long Position)  Right-Tail (Short Position) 

Normal 

Method 

 

Tail-Index  Trans.-

based 

Method 

 Normal 

Method 

 

Tail-Index Trans.-

based 

Method 

Hill’s  OLS   Hill’s  OLS  

(A) Full-Sample Results 

 

US Dollar 3.53 3.20 3.20 2.61  12.90 10.99 10.15 8.86 

Pound Sterling 0.40 0.03 0.04 0.09  6.64 6.02 5.85 4.84 

Euro 0.64 0.30 0.27 0.30  9.98 8.94 8.43 7.73 

Japanese Yen 1.28 0.38 0.32 0.56  8.04 6.99 7.03 5.83 

 

(B) Rolling-Sample Results 

 

US Dollar 2.56 2.74 2.38 1.75  10.09 7.37 7.19 5.60 

Pound Sterling 1.29 0.90 0.59 0.49  7.94 7.30 7.99 5.57 

Euro 0.78 0.51 0.53 0.38  9.81 9.98 9.43 7.12 

Japanese Yen 2.39 1.06 0.56 1.54  8.95 8.12 8.13 6.43 

 

 

Table 4.6: Values/Scores of Lopez’s Loss-Function (Eq. 4.5) 

Asset/ 

Portfolio 

Left-Tail (Long Position)  Right-Tail (Short Position) 

Normal 

Method 

 

Tail-Index  Trans.-

based  

Method 

 Normal 

Method 

 

Tail-Index Trans.-

based  

Method 

Hill’s  OLS   Hill’s  OLS  

 

(A) Full-Sample Results 

 

US Dollar 15.53 13.21 13.20 10.61  25.90 20.99 19.15 17.86 

Pound Sterling 5.40 2.03 2.04 2.09  13.64 12.02 11.85 10.84 

Euro 6.64 3.30 3.27 3.30  15.98 14.94 14.43 13.73 

Japanese Yen 8.28 3.38 3.32 4.56  17.04 14.99 15.04 12.83 

 

(B) Rolling-Sample Results 

 

US Dollar 13.56 13.74 11.38 10.75  21.09 16.37 16.19 13.60 

Pound Sterling 10.29 9.90 8.60 8.49  17.94 17.30 15.99 11.57 

Euro 7.78 3.51 4.53 3.38  15.81 15.98 15.43 13.12 

Japanese Yen 12.39 6.06 5.56 7.54  18.95 16.12 16.13 13.43 

5.  Concluding Remarks  

The concept of Value-at-Risk (VaR) has become a key tool not only for measuring 

various categories of financial risk (such as market risk, credit risk, and operational risk) and 

for computing the capital that needs to be maintained by banks for holding such risk 

exposures but also for other purposes such as determining the margin requirement at stock 

exchanges. The VaR suffers from the limitation of not being a coherent risk measure. Over 
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time, it has gained importance in the context of risk management. It has been argued that 

excess shortfall (ES), defined as the average of the losses over VaR, would capture the 

severity of losses better. However, the accuracy of ES measures depends on the quality of the 

VaR numbers. Further, the VaR has been the basis for other new/related concepts, such as 

conditional-VaR (Co-VaR), which gained importance in assessing the stability of financial 

systems. The growing applicability of VaR for dealing with wider types of financial risks and 

for other purposes through related concepts such as ES and Co-VaR make a renewed case for 

improving the accuracy of the VaR measurement.  

We consider a case involving the estimation of VaR when the historical returns on a 

portfolio become available. Traditional literature suggests modelling the distribution of 

returns or log-returns based on the historical values. If the returns were normally distributed, 

the VaR could be estimated simply by using the first two moments of the distribution and the 

tabulated values of the standard normal distribution. Thus, the normal method or the 

covariance approach of VaR estimation in homoscedastic situations as well as heteroscedastic 

cases has been overwhelmingly popular among practitioners. However, the extant empirical 

literature shows that the task is potentially difficult because the financial market returns 

seldom follow normal distribution. There is empirical evidence that the distributions of 

returns have thicker tails than normal and are skewed at times.  

In order to handle the observed non-normality of returns, a number of techniques have 

been proposed in the literature. Most of the available techniques (parametric or non-

parametric) aim to directly identify the best fitted return distribution (which is possibly not 

normal). An indirect approach would be to transform the possible non-normal returns to near 

(approximate) normal variables and use the properties of normal distribution to estimate the 

threshold tail-value. Samanta (2008) experimented with an indirect approach by transforming 

the observed returns (which possibly do not follow normal distribution) to approximate/near 

normality. The empirical results presented in this prior study are quite encouraging and show 

that the transformation-based approach is a sensible alternative for measuring VaR.  

In this paper, we re-assess the performance of the indirect approach on two counts. 

First, we undertake a simulation exercise to examine how good the transformation is in 

transforming random observations drawn from potential classes of non-normal distributions 

(the student-t distribution, skewed Laplace distribution, ARCH/GARCH models) to normal 

variables. Our simulated results show that the transformation is quite useful in inducing 

normality to observations drawn from several heterogeneous classes of non-normal 

distributions. Interestingly, the transformation preserves normality in the sense that it does 

not distort the skewness and excess kurtosis to be different from zero when the original 

observations truly come from a normal distribution.  

Second, we examine the robustness of the empirical results reported in Samanta (2008) 

based on real data pertaining to the years before the recent global financial crisis. To do so, 

we used the daily exchange rate data from the post-crisis period and compared the accuracy 

of the VaR estimates obtained through the indirect approach and a few other competing 

techniques (normal method and two forms of tail-index methods). Our empirical results are 

quite interesting. The indirect approach, despite being intuitively appealing and requiring 
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simple practical computation, outperforms the normal method; it also produces VaR 

estimates that are no worse than those produced by more sophisticated and complex 

approaches (such as those based on tail-index).   

The simulated and empirical results presented in this paper indicate that the simple 

transformation-based indirect approach of VaR estimation is a sensible one. The ease of 

understanding and simplicity of implementation of this approach are particularly useful to 

practitioners who are grappling with the demanding nature of decision-making under 

dynamic settings. Future extensions of this research could look for theoretical justifications as 

to why and when such transformations of returns would induce normality. Further, 

researchers could examine the robustness of the empirical results over time across markets 

and countries.  
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APPENDIX A  

 

Direct Approaches of VaR Estimation:  

Competing Techniques Considered in the Empirical Exercise 

The central issue to any VaR measurement strategy has been the estimation of the 

quantiles/percentiles of change in the value or returns of the portfolio. If the distribution of 

the change in value or returns were normal, one would have simply estimated the mean and 

standard deviation of the normal distribution, thereby estimating the implied percentiles that 

would be the function of the mean and variance. However, the biggest practical problem in 

measuring VaR is that the returns generally do not follow a normal distribution.  

A.1  Conventional Direct Approaches: Broad Categories 

The conventional direct approaches dealing with non-normality can be classified into 

two broad categories: non-parametric and parametric. The non-parametric approaches (such 

as historical simulation) do not assume any specific parametric form of the underlying 

probability distribution; they attempt to discover the distribution non-parametrically from 

past data. The parametric category for non-normality is vast and includes all the relevant 

probability distributions other than the normal one. There are a number of alternative 

strategies under this category, some of which handle possible non-normality by fitting 

suitable non-normal distributions to past data directly, while others handle non-normality 

indirectly.  

First, one may handle the observed non-normality by directly identifying suitable non-

normal distributions such as the Student-t distribution, Laplace distribution, hyperbolic 

distribution, or a mixture of two or more distributions (van den Goorbergh and Vlaar, 1999; 

Bauer, 2000; Linden, 2001). Even by mixing two or more normal distributions, one may 

generate non-normal (fat-tail and/or asymmetrical) distribution.  

Second, one may model only the fat-tails of the underlying distribution through the 

extreme value theory either by modelling the distribution of extreme returns or by estimating 

the tail-index that measures tail fatness (Tsay, 2002; van den Goorbergh and Vlaar, 1999). 

Under the tail-index approach, the focus is not to fit the complete portion of the underlying 

distribution. Rather, it models only the tails of the underlying distribution and identifies a 

suitable Pareto distribution to fit only the given tail portion. The possible asymmetry of the 

returns distribution is addressed indirectly as the Pareto distribution can be identified 

separately for each tail.     

Third, for building models that capture volatility clustering, the choice ranges from the 

exponential weighted average method (J.P. Morgan/Reuters, 1996) to the ARCH/GARCH 

models or similar more general models for portfolio returns (Engle, 1982; Bollerslev, 1986; 

Wong et al., 2003). Even conditionally normal variables can be non-normal unconditionally.  
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A.2  Normal (Covariance) Method 

The simplest possible VaR method is the normal (covariance) method. If  and are 

the mean and standard deviation, respectively, for the returns at a future date, the VaR would 

be calculated from the expression )(  z , where z represents the percentile corresponding 

to the left-tail probability  of the standard normal distribution, and  is the probability level 

attached to the VaR numbers. This approach is static in the sense that it models the 

unconditional returns distribution (van den Goorbergh and Vlaar, 1999).  

The unconditional distribution of returns generally shows fatter tails (leptokurtosis or 

excess kurtosis) than normal. This means that the normality assumption for unconditional 

returns distribution is not realistic. Further, fat-tails could also be a reflection of the changing 

conditional volatility, which can be modelled under suitable conditional heteroscedastic 

models such as exponentially weighted moving average used in RiskMetrics (J. P. 

Morgan/Reuters, 1996) or more advanced models such as ARCH, GARCH, etc. (Engle 1982; 

Bollerslev, 1986; Wong et al., 2003). Under normality of such conditional distributions, the 

expression of the VaR estimates is )(  ztt  , where t and t are the time-varying/conditional 

mean and standard deviation of returns, respectively.  

A.3  VaR Measurement Using Tail-Index 

The fat tails of unconditional returns distribution can be handled through extreme value 

theory using tail-index (for instance), which measures the amount of tail fatness. One can, 

therefore, estimate the tail-index and measure the VaR based on the underlying distribution. 

The basic premise of this idea stems from the result that the tails of every fat-tailed 

distribution converge to the tails of the Pareto distribution. The upper tail of such 

distributions can be modelled simply as: 

Prob[ X > x] ≈ C
α
 |x|

–α
 (i.e. Prob[X  x] ≈1 - C

α
 |x|

-α
);  x > C    (A.1)  

where the symbol ≈ indicates approximately equal; C is the threshold above which the Pareto 

law holds; |x| denotes the absolute value of x; and the parameter  is the tail-index.  

Similarly, the lower tail of a fat-tailed distribution can be modelled as: 

Prob[X > x] ≈1 - C
α
  x

–α
    (i.e. Prob[X  x] ≈ C

α
 x

-α
);   x < C   (A.2)  

where C is the threshold below which the Pareto law holds, and the parameter  (called the 

tail-index) measures the tail-fatness.  

In practice, observations in the upper-tail of the return distribution are generally 

positive, and those in the lower-tail are negative. Thus, Eqs. (A.1) and (A.2) are important in 

VaR measurement. The holder of a short financial position suffers a loss when the returns on 

the underlying assets are positive; therefore, the method concentrates on the upper-tail of the 

distribution (i.e., Eq. A.1) while calculating the VaR (Tsay, 2002, p. 258). Similarly, the 

holder of a long financial position would model the lower-tail of return distribution (i.e., use 

Eq. A.2), since a negative return on the underlying assets would lead to losses. In either case, 

the estimation of the VaR is crucially dependent on the estimation of the tail-index . There 
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are several methods for estimating tail-index, such as Hill‟s (1975) estimator and the 

estimator under the ordinary least squares (OLS) framework suggested by van den Goorbergh 

(1999). These two methods are presented below.    

A.3.1  Hill’s Estimator for Tail-Index 

For a given threshold C in the right-tail, Hill‟s (1975) maximum likelihood estimator of 

 = 1/α is 














n

i

i

C

X

n 1

log
1

η̂          (A.3) 

where Xi‟s i = 1,2, …..,n are n observations (exceeding C) from the right-tail of the 

distribution.  

For estimating the parameters for the left-tail, we simply multiply the observations by –

1 and repeat the calculations applicable to the right-tail of the distribution.    

In reality, C is usually unknown and needs to be estimated. If the sample observations 

come from a Pareto distribution, C would be estimated by the minimum observed value (the 

minimum order statistic). However, we are not modelling the complete portion of the Pareto 

distribution. We are dealing with only a fat-tailed distribution that has a right-tail that is 

approximated by the tail of a Pareto distribution. Therefore, one has to select a threshold level 

(say C) above which the Pareto law holds. In practice, Eq. (A.3) can be evaluated based on 

order statistics in the right-tail; thus, the selection of the order statistics truncation number 

assumes importance. In other words, one needs to select the number of extreme observations 

n needed to operationalise Eq.(A.3). Mills (1999, p. 186) discusses a number of available 

strategies for selecting n. The method used in this paper is adapted from Phillips et al. (1996). 

They suggest that the optimal value of n should be one, which minimises the Mean-Square-

Error (MSE) of the limiting distribution of η̂ . To implement this strategy, we need the 

estimates of  for truncation numbers n1 = N

 and n2=N


, where 0 <  < 2/3 <  < 1. Let jη̂ be 

the estimate of  for n = nj, j = 1,2. The optimal choice for truncation number is n = [a T
2/3

], 

where „a‟ is a constant estimated as 
3/2

2121 |)ˆˆ)(/)(2/ˆ(|ˆ   nTa . Phillips et al. (1996) 

recommended setting  = 0.6 and  = 0.9 (see Mills, 1999, p. 186).   

A.3.2 Ordinary Least Squares (OLS) for Estimating Tail-Index 

The tail-index can be estimated via alternative approaches. An OLS-based tail-index 

estimation was suggested by van den Goorbergh (1999). The same approach was discussed 

and implemented in van den Goorbergh and Vlaar (1999).
7
  

As the fat-tails declined by the Pareto-distribution type power, the OLS-based method 

for lower tail works as follows (using Eq.A.3): 

                                                 
7
 For an OLS estimation of tail-index, we followed van den Goorbergh and Vlaar (1999). 
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Prob[X  x] ≈ C
α
 |x|

-α
); i.e., Log Prob[X  x] ≈  log C -  log |x| = a -  log |x|  (A.4) 

where C is the lower-tail threshold for the Pareto distribution to hold good, and a =  log C is 

a constant. 

The tail-index  in Eq. (A.4) can be estimated through OLS. The tail-index for the 

right-tail can be estimated similarly via a regression equation corresponding to Eq. (A.2). 

Alternatively, one could multiply the underlying variable with -1 and carry out the OLS 

analysis for the lower-tail of the transformed–variable (i.e., negative of the variable) to obtain 

the tail-index.   

A.3.3  Estimating VaR Using Tail-Index 

We follow van den Goorbergh and Vlaar (1999) for the measurement of VaR using the 

estimated tail-index. Let p and q (p < q) be the two tail probabilities; xp and xq are the 

corresponding percentiles. One gets p ≈ C
α
 (xp)

-α
 and q ≈ C

α
 (xq)

-α
, indicating that xp ≈ xq 

(q/p)
1/α

. Assuming that the threshold in the left-tail of the return (in percentage) distribution 

corresponds to the m
th 

order statistics (in ascending order), the estimate of xp would be 

̂

)(p
np

m
Rx̂ 








 m          (A.5) 

where R(m) is the m
th 

order statistics in the ascending order of n observations chosen from the 

tail of the underlying distribution; p is the given probability level for which VaR is being 

estimated; ̂ is the estimate of γ. Knowing the estimated percentile px̂ , one can easily 

calculate the VaR. 

The methodology described here estimates the tail-index and VaR for the right-tail of a 

distribution. To estimate the parameters for the left-tail, we simply multiply the observations 

by –1 and repeat the calculations.    
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